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Abstract

We present a comprehensive study on face recogni-
tion in unconstrained environments. By experimenting
with the Labeled Faces in the Wild (LFW) dataset, we
aim to address the challenge of accurately identifying
whether two facial images represent the same individ-
ual, especially in conditions with unaligned faces and
diverse backgrounds. Our contributions include mod-
ifications to the ResNet18 architecture, exploration
of TPS interpolation for face alignment, and an in-
depth evaluation of loss functions like Contrastive Loss,
Triplet Loss, and N-pair & Angular Loss in improv-
ing face recognition accuracy. Finally, we employ the
stacking method from ensemble learning to enhance the
overall predictive performance.

1. Introduction
Face recognition, a pivotal domain in computer vi-

sion and biometrics, aims to identify or verify a per-
son’s identity using their face. Historically, the fo-
cus has been on controlled scenarios with limited vari-
ability in facial orientation, expression, and illumi-
nation. However, real-world applications often en-
counter unconstrained environments where these fac-
tors vary widely, posing significant challenges to ex-
isting face recognition technologies. In unconstrained
settings, face recognition systems must contend with
diverse backgrounds, varying lighting conditions, un-
aligned faces, and a range of facial expressions and oc-
clusions.

Deep Convolutional Neural Networks (CNNs) [9]
have emerged as a powerful tool for image recognition
tasks, including face recognition, due to their ability
to learn complex, hierarchical feature representations
from data. ResNet [6], introduced by He et al., is par-
ticularly notable for its skip blocks that address the

degradation problem, enabling the training of networks
with a much greater number of layers.

The current research landscape in face recognition
is diverse [5, 12, 10, 15], encompassing improvements
in network architectures and data pre-processing tech-
niques, such as face alignment, and the development
of more effective loss functions for training. These ad-
vancements are critical for improving the performance
of face recognition systems in unconstrained environ-
ments, where traditional methods often fall short. Our
study contributes to this work by enhancing the ResNet
architecture, employing Thin Plate Spline (TPS) [4] in-
terpolation for face alignment, and comparing various
loss functions. These elements are crucial for improving
the accuracy and robustness of face recognition systems
in challenging real-world conditions.

Moreover, recognizing the potential of ensemble
learning in boosting the accuracy of complex predic-
tive models, our study also incorporates a stacking ap-
proach [16]. Ensemble learning, particularly stacking,
combines the strengths of multiple models to achieve
greater predictive performance.

2. Related Work
Initial efforts in the face recognition field relied heav-

ily on geometric features and template-matching tech-
niques [3]. Though effective in controlled settings,
these methods were limited in handling the variability
and complexity of unconstrained environments. With
the emergence of deep learning, the focus shifted to-
wards developing algorithms that could learn to rec-
ognize faces from data rather than relying on hand-
crafted features.

The introduction of CNNs marked a turning point
in face recognition. Pioneering works like LeCun et
al.’s introduction of CNNs for digit recognition [5] laid
the groundwork for their application in more com-
plex image recognition tasks, including face recogni-
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tion. The development of deep CNN architectures,
such as AlexNet [9], VGGNet [13], and GoogleNet [14],
further advanced the field, demonstrating the effective-
ness of deep networks in learning hierarchical feature
representations.

ResNet, a deeper and more sophisticated archi-
tecture, addressed the limitations of previous CNNs
by introducing residual learning. This innovation al-
lowed for the training of networks with a significantly
higher number of layers without degradation in per-
formance, a critical advancement for complex tasks
like face recognition. ResNet’s ability to learn rich,
deep representations made it particularly suited for
face recognition tasks, where nuances in facial features
are paramount.

Alongside advancements in network architecture,
there has been a growing interest in the pre-processing
of facial images, particularly in alignment. Face align-
ment techniques, such as TPS interpolation [2], have
become essential in managing the variations in facial
geometry that occur in unconstrained environments.
These techniques adjust faces to a canonical pose, en-
suring that the neural network receives well-aligned
and standardized inputs.

Loss functions in neural networks are another area
of significant research. Especially in metric learning
for face recognition, traditional loss functions such
as cross-entropy, have been replaced by Contrastive
Loss [5], Triplet Loss [12], N-pair & Angular Loss
(NL&AL) [15] and so on. These loss functions are
designed to enhance the discriminative power of the
network by encouraging it to learn embeddings that
effectively differentiate between different individuals.

Our study builds upon these developments, focusing
on enhancing the ResNet architecture for face recogni-
tion, applying TPS interpolation for face alignment,
and conducting a comparative analysis of various loss
functions. By integrating these advancements, we aim
to improve the face recognition performance in uncon-
strained environments.

Recent advancements in ensemble learning, specifi-
cally stacking methods [16], have also gained attention
in image recognition tasks. Stacking involves training
a meta-model to combine the outputs of several base
models, enhancing overall performance. This approach
has been effective in scenarios where a single model’s
perspective is insufficient, making it a valuable addi-
tion to our study of face recognition.
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Figure 1: Model architecture.

3. Approach
3.1. ResNet18 Architecture Modification

We adapted the ResNet18 architecture for single-
channel grayscale images and replaced its output layer
with custom linear layers to produce 16-dimensional
embedding vectors for face recognition (Figure 1). This
model leverages the robust feature extraction capabili-
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ties of the ResNet architecture, and extends it to gener-
ate compact yet informative facial representations and
ensure distinguishability between different individuals.

Specifically, we modified the initial convolutional
layer of ResNet18, altering the input channel count to
match single-channel grayscale inputs. Following the
ResNet feature extraction, a Batch Normalization layer
is introduced. This layer aids in stabilizing the learn-
ing process and normalizing the feature representation.
The high-dimensional features obtained from ResNet
are further processed through a sequence of layers, in-
cluding ReLU activation and linear transformations.
The final output is a 16-dimensional encoding vector
for each face.

3.2. Thin Plate Spline (TPS) Interpolation

We utilized TPS, a spline-based data interpolation
and smoothing technique, for face alignment. This ap-
proach helps manage complex facial image variations
while maintaining the integrity of facial features.

3.2.1 Face Cropping and Alignment Based on Detec-
tion Boxes and Key Points

To reduce overfitting and improve computational effi-
ciency, we resized the images in our training set from
250x250 pixels to 80x80 pixels and converted them
to grayscale. Additionally, face cropping and align-
ment are crucial for enhancing recognition accuracy.
As shown in Figure 3(a), we selected a standard face
image with a resolution of 80×80. We utilized the dlib
library [1] to determine the coordinates of 68 key points
for the training samples and the standard face. In cases
where multiple faces are detected, we focus only on the
first 68 key points corresponding to the central face.
By employing Thin Plate Spline (TPS) interpolation,
we achieved an affine transformation between the key
points of the standard face and those of the faces to be
processed, aligning them accordingly.

3.2.2 TPS Algorithm

Figure 2: TPS algorithm.

The basic problem for the TPS algo-
rithm is: Given a series of observation points
(x1, y1), (x2, y2), · · · , (xn, yn), with the generating

function Y = f(X) unknown, how to fit an expression
approximating the actual generating function using
these observations. This expression is known as the
interpolation function.

The TPS interpolation function, for D = 2, is as
follows:

ϕ(x) = c+aTx+ωT s(x), c ∈ R1×1, a ∈ RD×1, ω ∈ RN×1

(1)
where

s(x) = (σ(x− x1), σ(x− x2), · · · , σ(x− xn))
T (2)

σ(x) = ||x||2x log ||x||2x (3)
The output function ϕ(x) has N+D+1 parameters.
Each observation point provides a constraint yk =
ϕ(xk). Additional D+1 constraints are added:

n∑
k=1

ωk = 0 (4)

n∑
k=1

ωkx
1
k = 0, · · · ,

n∑
k=1

ωkx
D
k = 0 (5)

Let

X =


x1
1 x2

1 · · · xD
1

x1
2 x2

2 · · · xD
2

...
... . . . ...

x1
N x2

N · · · xD
N

 Y =


y1
y2
...
yN



S =


σ (x1 − x1) σ (x1 − x2) · · · σ (x1 − xN)
σ (x2 − x1) σ (x2 − x2) · · · σ (x2 − xN)

...
... . . . ...

σ (xN − x1) σ (xN − x2) · · · σ (xN − xN)


(6)

The system of constraint equations is then S 1N X
1TN 0 0
XT 0 0

 ω
c
a

 = Γ

 ω
c
a

 =

 Y
0
0

 (7)

When Γ is non-singular, this system of equations has a
unique solution. Therefore, the parameter matrix can
be obtained as:  ω

c
a

 = Γ−1

 Y
0
0

 (8)

3.3. Loss Functions

We explored three special loss functions: Con-
trastive Loss, Triplet Loss, and N-pair & Angular Loss,
to compute distances between facial feature embed-
dings.
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(a) (b) (c)

Figure 3: (a) Standard face. (b) An image from the
training set. (c) Processed image.

3.3.1 Contrastive Loss

Contrastive loss [5] is a loss function for metric learn-
ing. It is typically used in unsupervised and semi-
supervised learning to ensure that similar points are
closer in the feature space, while dissimilar points are
farther apart beyond a certain margin.

The mathematical formulation of the contrastive
loss is given by:

L =
1

2N

N∑
i=1

yi ·D2
i + (1− yi) ·max(0,m−Di)

2 (9)

where L is the contrastive loss for a batch, N is the
number of pairs in the batch, yi is a binary indicator
that equals 1 if the pair is similar and 0 if otherwise,
Di is the Euclidean distance between the features of
the i-th pair, and m is a predefined margin.

3.3.2 Triplet Loss

Figure 4: Triplet Loss.

For a given triplet (A, P, N) where A and P are
different samples of the same class, and A and N are
samples of different classes, Triplet Loss aims to learn
a feature space where, in this space, the benchmark
sample A of the same category is closer to the positive
sample P and farther from the negative sample N. The
distance expressions are:

d(A,P ) = ||f(A)− f(P )||2 (10)

d(A,N) = ||f(A)− f(N)||2 (11)
To prevent overfitting, a hyperparameter α is added:

||f(A)− f(P )||2 − ||f(A)− f(N)||2 + α ≤ 0 (12)

Therefore, the loss function is:

l(A,P,N) = max(||f(A)−f(P )||2−||f(A)−f(N)||2+α, 0)
(13)

Using Triplet Loss to compute the loss clusters faces,
requiring that the encoding distances of the same per-
son and different people differ by at least a margin of
0.2 (α).

Furthermore, by examining Equations 10 and 11, it
becomes evident that the Triplet loss formulation does
not encapsulate all three points (A, P, N) collectively
within a single equation.

3.3.3 Angular Loss

Angular Loss [10] considers angular relationships as a
measure of similarity. For a given triplet (A, P, N):

∂λang(T )

∂xa
= 2(xa−xp)−2 tan2 α(xa+xp−2xn) (14)

∂λang(T )

∂xp
= 2(xp−xa)−2 tan2 α(xa+xp−2xn) (15)

∂λang(T )

∂xn
= 4 tan2 α[(xa + xp)− 2xn] (16)

Nevertheless, during training, we encountered an is-
sue where the loss values were excessively small, result-
ing in inefficient training progress or a complete halt
in improvements. Consequently, we address this chal-
lenge by incorporating the N-pair & Angular Loss, a
proposed improvement outlined in the work by Wang
et al. [15]

3.3.4 N-pair Loss & Angular Loss (NL&AL)

N-pair loss reduces the computational burden by em-
ploying an efficient batch construction strategy. It con-
structs batches using only N pairs of examples instead
of the (N+1)×N pairs that would be required for the
same number of comparisons with triplet loss. The dif-
ferential formula in Triplet Loss only considers pairwise
relations, omitting the third point. In addition, due to
significant variations in intra-class distances, using a
single global margin in real-world tasks is inappropri-
ate. Therefore, we can use NL&AL [15] to resolve this
issue.

The joint of N-pair and angular loss learns more
discriminative features, especially with large intra-class
variance. Figure 7 shows our model’s training accuracy
and loss.
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3.4. Ensemble Learning through Stacking

We integrate a stacking ensemble method to refine
our face recognition framework further. This involves
training multiple diverse models on our dataset and
then using a meta-learner to learn the optimal way to
combine their predictions. Stacking aims to provide a
more robust and accurate face recognition system by
capturing the strengths and mitigating the weaknesses
of individual models. . The image below illustrates the
fundamental structure of a Stacking Neural Network.
We utilize four neural networks that we previously
trained (Network 1,2,4,5 in Table 1). For two given
photos, we calculate four distances using the aforemen-
tioned networks. These four distances are then fed as
inputs into a fully connected neural network, which
ultimately outputs whether the two samples represent
the same person (label 0) or different individuals (label
1).

Figure 5: Ensemble learning network structure.

The loss function here is the Binary Cross Entropy
Loss. For a single data, it is given by:

BCELoss = −(y · log(p) + (1− y) · log(1− p)) (17)

Where: y is the actual label (0 or 1). p is the predicted
probability (output of the model). log is the natural
logarithm.

Since it aggregates the outputs of multiple models,
the ensemble model is more robust to noise and vari-
ance in the data, leading to more stable predictions.
Furthermore, ensembles can reduce the risk of overfit-
ting because different models will likely overfit in dif-
ferent ways.

4. Experiments and Results
Our facial recognition task is designed to determine

whether two given facial images belong to the same
person. In this task, we utilized the LFW dataset[7].
A characteristic of this dataset is that the target faces
are centrally located against complex backgrounds and
are not aligned. In section 4.1, we employed cross-
validation methods, dividing the training data into
training, validation, and test sets (comprising 12448
facial images from 5354 distinct individuals, each rep-
resented by one or more images). In section 4.2, we
applied our trained models to a discrimination task
involving 600 pairs of faces. All these images were
sourced from the LFW dataset, and there is no overlap
of images between sections 4.1 and 4.2.

In our experiments using the LFW dataset, we eval-
uated the combined effects of our modified ResNet18
architecture with different loss functions and the effec-
tiveness of TPS interpolation for face alignment. Addi-
tionally, we explored the impact of using ImageNet [11]
pre-trained ResNet18 model and ensemble learning on
training effectiveness.

4.1. Cross-Validation

To ensure robustness and prevent overfitting, we use
cross-validation, splitting the training data into train-
ing, evaluation, and test sets in an 8:1:1 ratio. We
randomly select positive and negative samples to form
unique triplets during each training epoch, using each
sample three times. In our training configuration, we
use Adam Optimizer [8], setting the learning rate to
0.0001 and including a weight decay of 0.003.

To address the twin problem, where the model en-
counters a large number of highly similar yet differently
labeled faces during training (due to mislabeling, low
image quality, or genuine resemblance), the model may
mistakenly identify an unlabeled face of the same per-
son as a different individual in subsequent encounters.
The approach of FaceNet [12] is to calculate the closest
match based on the local features of different individu-
als rather than the closest global features. Given that
our dataset is smaller, we compute the closest match
based on global features. Still, when selecting negative
samples, we skip the first 20 images (sorted in ascend-
ing order of their encoding distances).

The facial features are represented as tensors, with
encodings for the training set grouped by individual
and test set pairs stored separately. Our model employs
a multi-layer linear model to output these encodings
and uses Euclidean or Angular Distance to measure the
disparity between facial feature embeddings, applying
Contrastive Loss, Triplet Loss, or NL&AL to enhance
the discriminative power of the model. The accuracy
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and loss curves of different methods are presented in
Figures 6, 7, 8, 9, 10.

We allow for a 1% fluctuation in accuracy during
model iterations to enhance the model’s ability to find
optimal solutions. If the accuracy of the validation
set does not increase after 12 epochs, training is halted
to prevent unnecessary computational expense and po-
tential overfitting. The final results of the highest val-
idating accuracy, test accuracy, and epoch counts are
shown in Table 1.

From the figures and tables, it is evident that Con-
trastive Loss performs the worst, while there is no sig-
nificant difference between the effects of NL&AL and
Triplet Loss. The use of ImageNet pretrained models
yields slightly better results than training from ran-
dom weights. After employing TPS for face alignment,
there is an improvement in recognition performance.

(a) Accuracy (b) Loss

Figure 6: Network 1 (ResNet + Contrastive Loss).

(a) Accuracy (b) Loss

Figure 7: Network 2 (ResNet + NL&AL).

4.2. A Discrimination Task Involving 600 Pairs of
Faces

We tested the model trained with cross-validation on
600 pairs of facial images to determine if each pair of
faces came from the same person. The accuracy rates
of models corresponding to different methods for this
task are shown in Table 2.

In ensemble learning, we utilized the four neural net-
works trained before (Network 1,2,4,5 in Table 1) and

(a) Accuracy (b) Loss

Figure 8: Network 3 (ResNet + Triplet Loss).

(a) Accuracy (b) Loss

Figure 9: Network 4 (ResNet + Triplet Loss + Pre-
train).

(a) Accuracy (b) Loss

Figure 10: Network 5 (ResNet + Triplet Loss + TPS).

got different distances for 600 pairs of faces. We used
the distances from 300 pairs of faces to be the train-
ing data of our ensemble model (fully connected neural
network) and the other 300 pairs to be the testing data.
Finally, the accuracy reached 82.67%.

5. Conclusion
This study demonstrates that targeted modifica-

tions to the ResNet architecture, effective face align-
ment using TPS interpolation, the careful selection of
loss functions, and ensemble learning through stacking
can significantly enhance face recognition accuracy in
unconstrained environments.

Looking to the future, we can further explore the use
of 3D modeling and transformations for face alignment,
as well as investigate more efficient loss functions. Ad-
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Network 1 Network 2 Network 3 Network 4 Network 5
Contrastive Loss NL&AL Triplet Loss Triplet Loss + Pretrain Triplet Loss + TPS

Highest Validating Accuracy 84.63% 88.94% 88.40% 89.03% 91.53%
Test Accuracy 83.56% 89.27% 89.19% 88.90% 89.80%
Epoch Counts 122 122 169 110 106

Table 1: Performance comparison in cross-validation of various enhancements to the ResNet architecture.

Network 1 Network 2 Network 3 Network 4 Network 5
Contrastive Loss NL&AL Triplet Loss Triplet Loss + Pretrain Triplet Loss + TPS

Test Accuracy 72.50% 72.30% 77.17% 81.00% 80.83%

Table 2: Performance comparison in 600-pairs task of various enhancements to the ResNet architecture.

ditionally, applying these technologies to other met-
ric learning applications, such as multimodal biometric
systems and intelligent surveillance systems, and even
in virtual and augmented reality environments, may
lead to new discoveries and enhance safety and user
experience in practical scenarios.
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